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ABSTRACT
Using time-related phenotypic data, methods of composite interval mapping and multiple-trait composite

interval mapping based on least squares were applied to map quantitative trait loci (QTL) underlying the
development of tiller number in rice. A recombinant inbred population and a corresponding saturated
molecular marker linkage map were constructed for the study. Tiller number was recorded every 4 or 5
days for a total of seven times starting at 20 days after sowing. Five QTL were detected on chromosomes
1, 3, and 5. These QTL explained more than half of the genetic variance at the final observation. All the
QTL displayed an S-shaped expression curve. Three QTL reached their highest expression rates during
active tillering stage, while the other two QTL achieved this either before or after the active tillering stage.

THE advent of molecular marker technology has The developmental genetics of quantitative traits (or
developmental quantitative genetics) has been studiedintroduced a new era to the science of quantitative

genetics. Since late 1980s, molecular markers have been for several decades on the basis of the methodology
of conventional quantitative genetics (Kheiralla andused extensively to map quantitative trait loci (QTL).

However, most of the QTL-mapping studies have been Whittington 1962; Peat and Whittington 1965;
Wu 1987; Xu and Shen 1991; Zhu 1995). In recentlimited to analyzing the performance of a trait (the

word “trait” used in this article will always refer to the years, molecular markers have been applied to map
QTL and to estimate their effects in different develop-quantitative trait) observed at a fixed time or stage (usu-

ally the end) of ontogenesis. Such a QTL-mapping strat- mental stages or periods (Bradshaw and Stettler
1995; Sondur et al. 1995; Plomion et al. 1996; Priceegy may be called time-fixed mapping (TFM), which can
and Tomos 1997; Verhaegen et al. 1997). These studiesonly estimate the effects of individual QTL accumulated
have provided some evidence of differential activitiesfrom the beginning of ontogenesis to the time of obser-
of QTL during ontogenesis. There are generally twovation. According to developmental genetics, the devel-
approaches to TRM. One is to analyze trait values ob-opment of a trait must result from differential activities
served at sequential times (Bradshaw and Stettlerof many related QTL. This means that different QTL
1995; Plomion et al. 1996; Price and Tomos 1997; Ver-may have different expression dynamics during the trait
haegen et al. 1997), from which the accumulated effectdevelopment, even though they may have the same final
of a QTL, from the beginning of ontogenesis to eacheffects. Therefore, to understand the genetic functions
observation time, can be estimated. We call this effectof QTL thoroughly, we should know, not only their
cumulant analysis (ECA; Wu et al. 1997). The othereffects at a given time or stage, but also their expression
approach is to analyze trait value increments observeddynamics. For this reason, time-related (phenotypic)
at sequential time intervals (Bradshaw and Stettlerdata obtained by successive observations throughout the
1995; Sondur et al. 1995; Plomion et al. 1996; Ver-trait development should be used for QTL analysis. Such
haegen et al. 1997), from which the incremental effecta strategy of QTL mapping may be called time-related
of a QTL at each time interval can be estimated. Wemapping (TRM). Apart from revealing the expression
call this effect increment analysis (EIA; Wu et al. 1997).dynamics of individual QTL, TRM can also increase the
The characteristics of ECA and EIA have been investi-statistical power for QTL detection because repeated
gated in detail by Wu et al. (1997).observations on the same individuals over different ages

For both ECA and EIA, phenotypic data from differ-are a form of replication, so more genetic information
ent times or time intervals can be analyzed either sepa-is used (Knapp and Bridges 1990; Verhaegen et al. 1997).
rately or jointly. As joint analysis could take the informa-
tion of genetic correlation between different times or time
intervals into account for QTL mapping (Jiang and Zeng
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1996); blk is the partial regression coefficient of yjk on markerthe studies of time-related QTL mapping have adopted
l; xjl indicates the genotypes of marker (cofactor) l, takingonly the separate analyses approach. An exception is
values of 1 for M1M1 and 21 for M2M2; ejk is the random error

the study conducted by Verhaegen et al. (1997). They for trait k in individual j; and n, m, and t are the numbers of
applied ANOVA to jointly analyze data from different individuals, markers selected as cofactors, and traits to be

analyzed, respectively. In matrix notation, Equation 1 can bedevelopmental stages, but ANOVA cannot estimate the
further expressed concisely aseffects of QTL.

Tiller number is an important agronomic character in Y 5 X B 1 E, (2)
rice and is easily measured throughout its development.

where Y is an n 3 t matrix of yjk; X is an n 3 (m 1 2) matrixHence, tiller number could serve as a suitable model of 1, x*
j and xjl; B is an (m 1 2) 3 t matrix of b 0k, b*

k, and bl k;trait for the study of TRM of QTL. In this article, we and E is an n 3 t matrix of ejk.
report a study of TRM of QTL underlying the develop- Equation 1 or 2 can be fitted with the method of maximum

likelihood via the ECM algorithm as proposed by Jiang andment of tiller number in rice by using the method of
Zeng (1995), but its computation is complicated and timecomposite interval mapping (CIM; Zeng 1994) for sepa-
consuming. To simplify the computation, for the case of one-rate ECA (SECA) and separate EIA (SEIA) and the trait analysis, it has been shown that the method of least

methods of multiple-trait CIM (MCIM; Jiang and Zeng squares is also applicable to interval mapping (Haley and
1995) for joint ECA (JECA) and joint EIA (JEIA). Knott 1992) and CIM (Wu et al. 1996) as long as the indica-

tor variable x* takes its expected value, determined by the
genotypes of flanking markers, and the results are very close
to those obtained by maximum likelihood. This conclusionMATERIALS AND METHODS
could reasonably be extended to the case of multiple-trait

Experiment and map construction: A population consisting analysis. In fact, it is apparent that Equation 1 or 2 is a standard,
of 131 recombinant inbred (RI, F7) lines was constructed by multivariate, multiple-regression model when the putative
a single-seed descent from a cross between two indica rice QTLs position is given. Hence, a standard least-squares proce-
varieties, H359 and Acc8558. A field experiment was carried dure (cf. Press 1972) can be applied. The least-squares esti-
out at Fujian Agricultural University in China in 1996. Seeds mate of B is
of the RI lines and their parents were pregerminated on May

B̂ 5 (X9X)21X9Y, (3)26 and sown in germination plates on May 31. Seedlings were
transplanted into the field on June 15, with five seedlings per the matrix of residual sum of squares is
line planted in a row. Fifteen seedlings of each parent were
planted in three separate rows that had been arranged ran- Ê9Ê 5 (Y 2 XB̂)9(Y 2 XB̂) 5 Y9Y 2 B̂9X9XB̂ (4)
domly among the RI lines. To reduce competition among

5 Y9Y 2 B̂9X9Y,individuals, a wide distance of 33 cm between plants and
between rows was adopted. The tiller number of each plant and the unbiased estimator of covariance matrix is
was investigated every 4 or 5 days from June 20 to July 18, i.e.,
at 20, 24, 29, 33, 38, 43, and 48 days after sowing (denoted oˆ 5

1
n 2 m 2 2

Ê9Ê. (5)
as t 1, t 2, t 3, t 4, t 5, t 6, and t 7, respectively). The investigation
ended at t 7 because some young tillers began to die after that

This algorithm can be computed easily.time.
The null hypothesis here is H0: b* 5 (b*

1, . . . ,b*
t )9 5 0 (re-Using the computer software MapMaker (Lander et al.

duced model, i.e., the putative QTL does not exist), and the1987), a dense molecular marker linkage map with 225 marker
alternative hypothesis is H1: b* 5 (b*

1, . . . ,b*
t )9 ? 0 (full model,loci (including 147 RFLPs and 78 AFLPs) covering a length

i.e., the putative QTL exists). Following the Box ap-of 1435.8 cM was constructed on the basis of the RI popula-
proximation approach (cf. Press 1972), we have a likelihoodtion. Markers in the map were approximately evenly distrib-
ratio (LR) statistic ofuted, but there were still some clusters where markers were

very closely linked (distance , 1 cM) and nearly cosegregated.
LR 5 2(n 2 m 2 1/2 t 2 2)ln

|oˆ full|
|oˆ reduced|

, (6)Obviously, only one marker in each cluster was needed for
QTL mapping; all others would be redundant and, therefore,
could be omitted. After removal of these redundant markers, where the subscripts full and reduced indicate that the covari-
a total of 199 markers were then used for the QTL analysis. ance matrices are estimated from the full and reduced models,
Details of the map are to be published in another paper. respectively. Under H0, the LR in Equation 6 approximately

QTL analysis: Both CIM and MCIM were used for separate follows a chi-square distribution with t d.f. when the putative
and joint ECA and EIA. For an RI popluation, if epistatic QTL’s position is given. Because the test is performed in the
effects are neglected, the model of MCIM can be written as whole genome, however, the distribution of the maximum LR
(note that CIM can be taken as a special case of MCIM when (or LOD ≈ 0.217 LR) score over the whole genome is very
only one trait is involved) complicated. Therefore, it is difficult to determine theoreti-

cally a suitable significance threshold for the test, and, thus,
yjk 5 b 0k 1 b*

kx*
j 1 o

m

l
blkxjl 1 ejk ( j 5 1, . . . ,n; k 5 1, . . . , t), empirical methods are usually required. In the present study,

for each CIM or MCIM analysis, a permutation test (Churchill(1)
and Doerge 1994) with 1000 replicates was conducted to
estimate the significance threshold.where yjk is the phenotypic value of individual j for trait (or

time or time interval) k; b 0k is the mean of the model for trait Before MCIM was conducted, a multivariate stepwise regres-
sion (MSR) procedure was performed to select informativek; b*

k is the additive effect of the putative QTL on trait k; x*
j

is an indicator variable of the putative QTL’s genotypes, tak- markers as cofactors. The regression model used was similar
to Equation 1 or Equation 2, except that all the independenting values of 1 for Q 1Q 1 and 21 for Q 2Q 2, with probabilities

depending on the genotypes of flanking markers (Wu et al. variables were markers. A significance test was performed on
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each marker according to Equation 6. A significance level of RESULTS
0.05 was used for the stepwise regression. Considering that

Development and variation of the trait: Both the RIour RI population was not large and there were more markers
lines and their parents showed an S-shaped growth curvethan RI lines, cofactor selection (stepwise regression) was con-

ducted on each chromosome separately, and, when a marker for tiller number. The fastest growth time interval (or
interval was tested in CIM or MCIM, only the informative the active tillering stage, ATS) was t4–t5. The tiller num-
markers on the same chromosome were used in the model

ber, however, continued to increase until the final obser-as cofactors so as to have a large degree of freedom. Also, a
vation. Variation of tiller number increased as the traitwindow was set for the marker interval being tested so that
developed. The difference in the final tiller numberstatistical power would not be reduced dramatically. Only the

markers outside the window could be used as cofactors. Five between the parents was 21.07 (H359 . Acc8558). In
window sizes (i.e., 0, 5, 10, 15, and 30 cM on each side of the RI population, the variation range, phenotypic vari-
the marker interval being tested) were tried to examine the

ance, genetic variance (estimated by ANOVA), and heri-influence of window size on QTL mapping.
tability of tiller number at the final observation wereIn addition to being estimated by MCIM, effects of QTL at

different times and time intervals were also estimated by MSR 13.6–55.4, 55.01, 46.87, and 85.20%, respectively. This
on the basis of a multiple-QTL model consisting of all the indicates that there was great genetic variation in tiller
detected QTL as independent variables. With the estimates number among the RI lines, and the heritability was
of each QTL’s effect cumulant at each time [denoted as ai(tk) high. Hence, the population was ideal for QTL map-for QTL i at tk] and effect increment at each time interval

ping. In addition, the mean values of the RI population[denoted as ai(tk11 2 tk) for QTL i at tk–tk11] obtained by MCIM
or MSR, the effect growth curve (or expression curve) and were always approximately at the midparent point
effect growth rate curve (or expression rate curve) of each throughout the experiment. This implied that the addi-
QTL were plotted. The effect growth rate (or expression rate) tive model would be suitable for analyzing the data.
was calculated by ai(tk11 2 tk)/(tk11 2 tk). It could also be

Locations of QTL: Empirical significance thresholdscalculated by [ai(tk11) 2 ai(tk)]/(tk11 2 tk). Theoretically, these
of LOD statistic at the genome-wise significance leveltwo methods are equivalent (Wu et al. 1997).

The heritability of a QTL (i.e., the proportion of phenotypic of 0.05 (denoted as LOD0.05) for JECA and JEIA were
variance explained by the QTL) at a time (or similarly, at a 6.32 and 6.01, respectively, when window size was zero.
time interval) was estimated by a 2

i (tk)/VP, and the heritability There were merely slight changes of LOD0.05 under other
of all detected QTL was estimated by [Ria 2

i (tk) 1 Ri≠j (1 2
window sizes. All SECA and SEIA (including all window2Rij)ai(tk)aj(tk)]/VP (Zeng 1993), where Rij 5 2rij/(1 1 2rij), rij
sizes) also had very similar LOD0.05, ranging from 2.93 tois the recombination frequency between QTL i and j, and VP

is the phenotypic variance of the population. 3.12. Hence, window size had little influence on LOD0.05.

TABLE 1

Putative QTL detected by TRM

tn1a tn3a a tn3b a tn3ca tn5a

LODb Pos.c LODb Pos.c LODb Pos.c LODb Pos.c LODb Pos.c

SECA
t 1 2.55 52 2.74 28 2.23 34 3.14* 0 1.64 68
t 2 2.47 52 2.95 28 3.93* 35 2.51 0 3.04* 69
t 3 2.05 53 3.58* 28 4.50* 35 0.69 0 4.94* 68
t 4 2.11 53 4.47* 28 4.96* 34 0.85 0 4.42* 67
t 5 1.77 53 5.14* 28 6.34* 35 0.53 0 5.63* 69
t 6 3.28* 53 5.61* 28 7.09* 35 0.30 0 5.42* 68
t 7 4.11* 55 4.94* 28 6.65* 35 0.29 0 4.34* 72

SEIA
t 1–t 2 0.60 53 0.93 28 3.20* 36 0.25 0 3.07* 73
t 2–t 3 1.37 53 3.07* 28 3.78* 34 0.05 0 5.06* 67
t 3–t 4 1.71 53 4.31* 28 4.28* 34 0.80 0 3.07* 67
t 4–t 5 0.99 53 4.31* 28 6.46* 37 0.14 0 5.46* 71
t 5–t 6 4.44* 57 1.88 28 2.89 34 — — 1.27 65
t 6–t 7 1.54 60 0.53 26 0.56 40 0.10 7 0.48 56

JECA 6.44* 52 3.42 28 4.55 35 1.97 0 6.43* 69
JEIA 5.94 56 3.97 28 6.44* 35 0.57 0 6.38* 69

a QTL’s name tn is the abbreviation of tiller number; the numeral indicates the chromosome on which the
QTL is located, and the lowercase letter indicates alphabetically the order of QTL on the same chromosome.

b Peak value. The asterisk represents significance at the 5% genome-wise level.
c Position in centimorgans corresponding to the peak of LOD score.
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When there was no window (i.e., window size 5 0 cM),
a total of five QTL were detected on three chromo-
somes, i.e., chromosomes 1, 3, and 5 (Table 1). No extra
QTL were detected when the window size increased.
On the contrary, the QTL tn3a could not be detected
when the window size was .5 cM. Hence, it seemed
that no window was necessary for this study, so only the
results of window-free analyses are listed in Table 1.
SECA detected all five QTL, SEIA detected four of them,
and JECA and JEIA both detected two QTL, respectively.
This result implies that separate analysis is more power-
ful than joint analysis for QTL detection.

Both SECA and SEIA obtained very similar estimates
of each QTL’s position at different times and time inter-
vals, although LOD peaks of the QTL were not statisti-
cally significant at some times and time intervals (Table
1). This indicates that the separate analyses across devel-
opmental stages were consistent. In addition, estimates
of each QTL’s position obtained by both JECA and
JEIA, though not all statistically significant, were almost
exactly the same (except for tn1), and they were also
very close to the estimates obtained by SECA and SEIA
(Table 1). Hence, it seemed that all these analyses were
consistent. The relative positions of the QTL are shown
in Figure 1 according to the estimates obtained by the
joint analyses (note that for tn1, using the average of
JECA and JEIA, i.e., (52 1 56)/2 5 54).

Expression dynamics of QTL: Expression curves and
expression rate curves of each QTL estimated by MCIM,
i.e., JECA and JEIA, and MSR are shown in Figure 2.

Figure 1.—Relative positions (indicated by arrows) of QTLExcept for tn3a, all QTL showed positive effects. This
underlying tiller number in rice. P2/M2, AFLP markers;means that alleles of these QTL from parent H359 acted
Xps2, RFLP markers revealed by wheat probes; all others,

to increase the character (tiller number). According to RFLP markers revealed by rice probes. In chromosome 3,
Figure 2, the curves obtained by MCIM and MSR were the arrows from top to bottom indicate tn3c, tn3a, and tn3b,

respectively.quite similar in shape, but the effects (both cumulants
and increments) of the QTL estimated by MCIM were
always greater than those estimated by MSR. Moreover,
it was found that, according to the estimates obtained ics and greatly different final effects. The QTL tn3a,

tn3b, and tn5 displayed the highest expression rate (orby MCIM, genetic variances explained by the detected
QTL at different times and time intervals all exceeded the most active expression) at time interval t 4–t 5, coin-

ciding with the ATS; tn3c, if it existed, showed the high-the phenotypic variances. This means that MCIM has
overestimated the effects of the QTL. The reason might est expression rate at t3–t4, before the ATS; and tn1

showed the highest expression rate at t 5–t 6, after thebe that the influence of unlinked QTL was not statisti-
cally controlled in the MCIM analyses in this study. As ATS. The expression rates of tn3a and tn5 became close

to zero after t 6 (Figure 2d), implying that they hadthe population was not large, unlinked QTL might con-
tribute to the estimate of the effect of the putative QTL basically ceased expression after that time. tn3c expres-

sion stopped even earlier. tn1, however, maintained abeing tested because of sampling errors. MSR solved
this problem to some extent because all detected QTL relatively high expression rate at the final time interval,

with a potential of continued expression until the endwere included in the model. In addition, it is noted that
the QTL tn3c was not statistically significant in the MSR of the tillering stage.

The heritability of each QTL and that of all QTL atanalysis. In fact, tn3c was detected only at the first obser-
vation by SECA (Table 1). This indicates that either the every time and time interval were estimated according

to the results of MSR (Figure 3, a and b). The foureffect of tn3c across the trait development was very small
(Figure 2, a and b) or that the detected QTL was actually significant QTL, i.e., tn1, tn3a, tn3b, and tn5, displayed

a heritability of 46.16% and explained 54.18% genetica false positive.
All the QTL showed an S-shaped expression curve variance in total at the final observation. This implies

that there must be still many other QTL with minorsimilar to the phenotypic growth curve (Figure 2). It is
seen that the QTL had discriminative expression dynam- effects explaining nearly half of the total genetic vari-
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Figure 2.—Expression curves (a and c) and expression rate Figure 3.—Variation of heritabilities (a and b) and LOD
curves (b and d) of QTL underlying tiller number in rice. (a) scores (c and d) of QTL underlying tiller number in rice, as
Estimated by the JECA; (b) estimated by the JEIA; (c and d) well as observation time (a and c) and time interval (b and d).
estimated by MSR.

(ii) it can increase statistical power for QTL detection.ance not detected in this study, probably because of the
We have seen that the statistical power of detecting arelatively small population size. It is interesting that the
QTL is largely determined by the QTL heritability,trend of variation of each QTL’s LOD (peak) score
which varies with the trait development (Figure 3). Thisacross times (Figure 3a) and time intervals (Figure 3b)
means that for each QTL, there must be a time (orwas quite similar to the variation trend of the QTL’s
times) and a time interval (or intervals) at which theheritability (Figure 3, c and d) rather than to the vari-
QTL displays its maximum heritabilities and, conse-ation trend of the QTL’s effect (Figure 2, c and d).
quently, maximum statistical power of being detectedThis indicates that the probability of detecting a QTL
(Wu et al. 1997). TRM enables us to map QTL at theiris mainly determined by the relative contribution of the
corresponding maximum statistical power times andQTL to the phenotypic variation rather than by the
time intervals; therefore, it can increase the statisticalabsolute size of the QTL’s effect. Therefore, at least
power for QTL mapping. On the contrary, with thein some cases, it could be improper to infer a QTL’s
strategy of TFM, only some of the QTL at most canexpression status at a time interval in accordance with
be mapped at their corresponding maximum statisticalthe result of SEIA because a QTL’s being not statistically
power times (but not time intervals). In the presentsignificant (because of small heritability) at a time inter-
study, there was no observation time at which all theval does not necessarily mean that the QTL does not
QTL could be detected (Table 1). Therefore, if QTLexpress (i.e., its expression rate is zero) at that time
mapping had been carried out only at a fixed time (nointerval (Wu et al. 1997).
matter what the time was), it would not have been able
to detect as many QTL as the TRM did.

DISCUSSION ECA vs. EIA: As cumulants and increments can be
converted mutually, these two methods are, at least inTFM vs. TRM: It has been pointed out in the Intro-
theory, equivalent in the estimation of a QTL’s effect.duction that TRM has two significant advantages over

TFM: (i) it can reveal expression dynamics of QTL and Their statistical power for QTL detection, however,
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could be quite different. According to a simulation study freedom for a small population. A problem caused by
this method is that the effect of the putative QTL beingfor the case of separate analysis (Wu et al. 1997), ECA

is generally suitable for mapping a QTL with a large tested is generally overestimated because the possible
contribution from unlinked QTL to the putative QTLfinal effect (i.e., effect at the final observation time) or

one that begins expression early although its final effect resulting from sampling errors is not controlled. How-
ever, with the method of MSR based on a multiple-QTLis small, while EIA is advantageous in mapping a QTL

that starts expression late or that has a small final effect model to estimate the effects of the detected QTL, the
problem can be solved, at least to some extent. We thinkbut a high expression rate that peaks within a narrow

time interval during the period of trait development. that this could be an appropriate approach for QTL
mapping in small populations. In addition, setting aJoint vs. separate analysis: According to the results of

the present study, it seems that SECA and SEIA based window for each marker interval being tested may also
be required for a small population. In accordance withon CIM can detect more QTL than JECA and JEIA based

on MCIM. This indicates that joint analysis based on the result of this study, we suggest that a series of differ-
ent window sizes should be tried in practical studies toMCIM is not necessarily statistically more powerful than

separate analyses based on CIM, although in theory, the identify the most appropriate one(s). There could be
a possibility that different QTL or chromosomal regionsformer always has a larger likelihood ratio (or LOD

score) than the latter (Jiang and Zeng 1995). The ad- need different window sizes.
Theoretical and practical meanings of TRM: The sig-vantage of joint analysis is that it can synthesize all the

information from different times or time intervals to nificant advantages of TRM as a new QTL mapping
strategy have been demonstrated. However, it is neces-give a comprehensive estimate of each QTL’s position,

according to which a corresponding complete expres- sary to stress that the importance of TRM is not limited
to mapping. Because TRM can reveal the expressionsion (or expression rate) curve of each QTL can be

estimated. In practice, therefore, both separate and dynamics of QTL, it has actually moved the study of
QTL mapping into an important research field—joint analyses should be conducted. In addition, joint

analysis can be applied to the investigation of QTL ex- developmental quantitative genetics. Studies in this field
will enable us to gain more and deeper insight into thepression dynamics of not only a single trait as in the

present study but also multiple traits. This will allow us genetic basis of quantitative traits, and they will also
benefit plant and animal breeding.to study the developmental genetic basis of correlations

among quantitative traits. The results obtained in the present study may provide
useful information for rice breeding. An important goalQTL mapping in small populations: Both CIM and

MCIM require a large population (Zeng 1994; Jiang of rice breeders is to create new varieties without non-
productive tillers because nonproductive tillers gener-and Zeng 1995). In practice, however, population size

usually cannot be very large. As in the present study, ally do not contribute to yield. As late developing tillers
are usually nonproductive, they waste nutrition and en-the population consisted of only 131 lines, but the map

used contained 199 markers. In this case, selecting infor- ergy. Therefore, the QTL that remain active until the
late tillering stage (e.g., tn1 in this study) could geneti-mative markers as cofactors becomes a problem. We

once tried a two-step selection procedure. Markers on cally cause nonproductive tillers. With the knowledge
acquired in this study and the technology of marker-each chromosome were first screened separately with a

relatively low significance level, and the preselected mark- assisted selection, it might be possible in the near future
to design and create ideal genotypes for new rice varie-ers from different chromosomes were then screened

jointly with a higher significance level. We found, how- ties with few nonproductive tillers.
While TRM has been clearly demonstrated here toever, that when different significance levels for the pre-

selection were used, the markers that were selected be of value in studying the dynamics of tiller develop-
ment, the technique will also be of considerable use infinally could be quite different and, therefore, the puta-

tive QTL detected could also be quite different. Such studying other characters. For example, at the present
time, soluble stem carbohydrates are believed to be ofinconsistency makes it very difficult or even impossible

to determine which QTL detected are believable and, value in enabling cereal plants to resist drought, as the
carbohydrate reserves can be mobilized to move fromtherefore, may seriously hurt the reliability of QTL map-

ping. In addition, integrating all the markers selected stems into developing grain during times of water stress.
TRM could help to elucidate the genetic control of thefrom the whole genome into the model could also

greatly decrease the degrees of freedom for regression carbohydrate reserves over time in different tissues and,
thus, aid breeders who aim to breed more drought-and, therefore, increase the error of parameter estima-

tion. Hence, in this article, we have adopted a method resistant plants. Another important use of TRM will be
in studying complex pathogens, such as Fusarium ofof selecting cofactors and mapping QTL on each chro-

mosome separately. The method could basically keep wheat, that can attack plants at the juvenile stage (foot
rot) or the adult plant stage (head blight). It is believedthe desirable property of the interval test of CIM and

MCIM and, at the same time, achieve larger degrees of that some genes for Fusarium resistance may act at cer-
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variances for unreplicated and replicated progenies. Geneticstain stages during the plant development, while others
126: 769–777.

act throughout the life cycle. Sequential disease testing Lander, E. S., P. Green, J. Abrahamson, A. Barlow, M. J. Daly
et al., 1987 MapMaker: a computer package for constructingcombined with TRM should, thus, enable breeders to
genetic-linkage maps. Genomics 1: 174–181.select genes that are active throughout the plant life cycle.
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